

HEV – Advanced technology for real world users

HEVC- 2 November 2016

Andy Eastlake C Eng FIMechE

Managing Director

LowCVP is a unique public-private membership organisation building evidence and creating robust policies and innovation support in UK

ARRIVA

Government &

Public Bodies

LowCVP Mission

Our Mission:

To accelerate a Sustainable shift to low carbon vehicles and fuels in the UK and thereby stimulate Opportunities for UK businesses".

The real world user

- Is not constrained
- Is not repeatable
- Is not rational
- Is not reliable
- Is not easy to engineer!

 What we can do is create "representative tests" and aim to engineer flexible solutions

What is the right vehicle

How will the vehicle be used

"Real World" testing since 1996

City Bus

Start with what we want?

Not, what will this do on my route?

Low Emission Bus Vehicle Emission Testing Procedure

- Test procedure Low Emission Bus Accreditation Scheme
- Real world cycle LowCVP UK Bus (LUB) Cycle as adopted in Low Emission Bus Scheme.
- Test to be undertaken at a vehicle laboratory using a chassis dynamometer
- Test conditions: 50% of seated passenger load
- Measurements: NO, NO2, NOx, N2O, CO2, CH4, PM, THC plus NH3

Success takes time, and perseverance and funding!

A Green Bus For Every Journey Case studies showing the range of low emission bus technologies in use throughout the UK

Key milestones in the evolution of green bus policy in the UK

1996

Creation of the Millbrook London Transport Bus (MLTB) Cycle 2007-08

Definition of a 'Low Carbon Emission Bus' (LCEB) 2009

Creation of a LCEB Accreditation 2009-10

BSOG LCEB incentive

Scottish Green
Bus Fund

2014

Low Carbon Bus
Technology
Roadmap
Research on
overcoming
barriers to LCEB
take-up

2015

OLEV Low Emission Bus Grant Scheme Definition of a LEB and new accreditation scheme 2016

OLEV Low Emission Bus Scheme Winners Announced

20 years of collaborative development of products, performance and policy

The UK Bus market success

- 40% of new Buses sold in 2015 classed as "Low Carbon"
- All technology options represented CNG, Hydrogen, Hybrid, Plug in, Full Electric, Mild hybrid, Biofuel
- Government support
 - Grant for Vehicles
 - Grant to support infrastructure
 - Operating incentives
- OEM support Full range of products
- Robust assessment full carbon impact, Air Quality, Cost
- Operator support and engagement, collaboration with OEM

Electric buses and infrastructure

LEB Certificate Performance Data

Electric Bus Models	Energy Consumption and Electric Range	WTW GHG and Air Pollution Emissions
Volvo 7900 Electric Single Decker Length: 12m Passenger capacity: 83 GVW: 18,000 kg	84.7 kWh/100km Up to 39.3 km	WTW GHG Emissions: 447.3 gCO2e /km 5.3 gCO2e/passenger km WTW GHG savings: 65% Zero emission
Optare Solo EV Single Decker Length: 9.2-9.9m Passenger capacity: 55 GVW: 11,300 kg	51.0 kWh/100 Up to 208km	WTW GHG Emissions: 307 gCO2e/km 5.6 gCO2e/passenger km WTW GHG savings: 69% Zero emission
BYD eBus Single Decker Length: 12m Passenger capacity: 70 GVW: 18,700 kg	83.1 kWh/100km Up to 452.7 km	WTW GHG Emissions: 429.6 gCO2e/km 6.1 gCO2e/passenger km WTW GHG savings: 62% Zero emission
BYD-ADL Enviro200EV Single Decker Length: 12m Passenger Capacity: 90 GVW: 18,600 kg	83.1 kWh/100km Up to 425.1 km	WTW GHG Emissions: 429.6 gCO2e/km 4.8 gCO2 e/passenger km WTW GHG Savings: 68% Zero emission

Overview of different charging strategies and what to consider regarding installation

Opportunity Charging

Plug-in Charging

Truck vehicle emissions testing procedure

- Test procedure HGV Technology Accreditation Scheme
- Real world test cycles derived from VECTO applied to UK.
- Test to be undertaken on test track with PEMS with chassis dynamometer option
- Test conditions: 50-60% payload,
- Measurements: NOx, NO2, CO2, THC, (PM, NH3, N2O not available on PEMS)

VECTO based Truck Cycles (Millbrook Versions)

LoCITY city centre challenge

City Centre Operation – low speed, start/stop (22km/h)

- Van focussed
- Correlated
- 60% load

Importance of cycle v technology

Illustrative WTW GHG for laden Van cycles

Consumers will make their own choice

- Question now is how to inspire mass market transition to more EV miles
- REEV/PHEV solution?
- Consumers resist giving up convenience
- True carbon impact of ULEVs depends on how they are used

Progressively more robust assessment

- UK Bus support uses:
- Real world cycle
- Well-to Wheel
- Full Greenhouse Gas
- Zero emission range

Commercial goods vehicles: The next big (low) carbon opportunity?

Figure 5: Licensed vehicles by type, GB: Q2 1996 - Q2 2016

Greenfleet Capital challenge, all given same task Low Carbon Vehicle Partnership

Conclusion

- Keep focussed on the real world user.
- Develop the technology to deliver the market needs
- Aim for common assessment for Energy, Range, Emissions etc.
- Don't assume you know what the driver will do!
- Communicate, collaborate and co-ordinate for success

You can't test the real world, only a representative sample!

Efficient mobility, lower carbon, cleaner air

Creating the platform for robust support of low emission and fuel efficient technologies

- Connect: With privileged access to information, you'll gain insight into low carbon vehicle policy development and into the policy process.
- □ Collaborate: You'll benefit from many opportunities to work and network with key UK and EU government, industry, NGO and other stakeholders
- □ **Influence**: You'll be able to initiate proposals and help to shape future low carbon vehicle policy, programmes and regulations

LowCVP is a partnership organisation with over 180 members with a stake in the low carbon road transport agenda.

Andy Eastlake – andy.eastlake@lowcvp.org.uk @aeastlake, @TheLowCVP